Contribution of the Mn-cofactored superoxide dismutase (SodA) to the virulence of Yersinia enterocolitica serotype O8.

نویسندگان

  • A Roggenkamp
  • T Bittner
  • L Leitritz
  • A Sing
  • J Heesemann
چکیده

Enteric pathogens harbor a set of enzymes (e.g., superoxide dismutases [SOD]) for detoxification of endogenous and exogenous reactive oxygen species which are encountered during infection. To analyze the role of the Mn-cofactored SOD (SodA) in the pathogenicity of yersiniae, we cloned the sodA gene of Yersinia enterocolitica serotype O8 by complementation of an Escherichia coli sodA sodB mutant and subsequently constructed an isogenic mutant by allelic exchange. Sequence analysis revealed an open reading frame that enabled the deduction of a sequence of 207 amino acids with 85% identity to SodA of E. coli. In a mouse infection model, the sodA null mutant was strongly attenuated in comparison to its parental strain. After intravenous infection, the survival and multiplication of the mutant in the spleen and liver were markedly reduced. In contrast, inactivation of sodA had only minor effects on survival and multiplication in the gut and Peyer's patches, as could be demonstrated in the orogastric infection model. The reduction in virulence was accompanied by a low but significant increase of susceptibility of the soda mutant to bacterial killing by polymorphonuclear leukocytes (PMN) and an alteration of the intracellular chemiluminescence response of PMN. These results suggest that the resistance of Y. enterocolitica to exogenous oxygen radicals produced by phagocytes involves the Mn-cofactored SOD. The important role of sodA for the pathogenicity of Y. enterocolitica could also be due to detoxification of endogenous, metabolically produced oxygen radicals which are encountered by extracellular enteric pathogens during the invasion of the host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational live oral carrier vaccine design by mutating virulence-associated genes of Yersinia enterocolitica.

Three different Yersinia enterocolitica serotype O8 strains harboring mutations in virulence-associated genes coding for Yersinia adhesin A (YadA), Mn-cofactored superoxide dismutase (SodA), and high-molecular-weight protein 1 were analyzed for their ability to colonize and persist in tissues after orogastric immunization of C57BL/6 mice. We demonstrated that all three Yersinia mutant strains w...

متن کامل

Attenuated Yersinia enterocolitica mutant strains exhibit differential virulence in cytokine-deficient mice: implications for the development of novel live carrier vaccines.

Yersinia enterocolitica mutant strains, including mutants deficient in the chaperone SycH resulting in a functional deficiency in tyrosine phosphatase (YopH), Mn-cofactored superoxide dismutase (SodA), iron-repressive protein 1 (IRP-1), and Yersinia adhesin A (YadA), were demonstrated to be highly attenuated in wild-type C57BL/6 mice. TNFRp55(-/-), IL-12p40(-/-), and IL-18(-/-) mutant mice, in ...

متن کامل

Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae.

Superoxide dismutases convert superoxide anions to molecular oxygen and hydrogen peroxide, which, in turn, is metabolized by catalases and/or peroxidases. These enzymes constitute one of the major defense mechanisms of cells against oxidative stress and hence play a role in the pathogenesis of certain bacteria. We previously demonstrated that group B streptococci (GBS) possess a single Mn-cofac...

متن کامل

Serogroup-related escape of Yersinia enterocolitica YopE from degradation by the ubiquitin-proteasome pathway.

Pathogenic Yersinia spp. employ a type III protein secretion system that translocates several Yersinia outer proteins (Yops) into the host cell to modify the host immune response. One strategy of the infected host cell to resist the bacterial attack is degradation and inactivation of injected bacterial virulence proteins through the ubiquitin-proteasome pathway. The cytotoxin YopE is a known ta...

متن کامل

Detection, Distribution and Characterization of Novel Superoxide Dismutases from Yersinia enterocolitica Biovar 1A

BACKGROUND Superoxide dismutases (SODs) cause dismutation of superoxide radicals to hydrogen peroxide and oxygen. Besides protecting the cells against oxidative damage by endogenously generated oxygen radicals, SODs play an important role in intraphagocytic survival of pathogenic bacteria. The complete genome sequences of Yersinia enterocolitica strains show presence of three different sod gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 65 11  شماره 

صفحات  -

تاریخ انتشار 1997